AI时代的前夜,网络交换机能否抓住市场迭代的深刻机遇

  最近产业中最爱玩的一个游戏,就是“AI在哪”。以往我们能看到AI存在于实验室内、存在于软件之中,但想要让AI从模型走进现实,往往没那么容易。最起码的,AI任务需要一系列条件去支撑,其细节建立在各种ICT基础设施的迭代之上。或许可以这样比喻,AI就像汽车,当它到来时,配套的高速路加油站修车厂都要建好。马车时代的路况,是无法发挥汽车任何优势的。

  AI走到现实的重要条件有很多,尤其需要注意的是,AI必然建立在ICT基础设施之上,通过网络空间延展到万物智能应用当中。可以说,AI的运转与网络环境息息相关,网络是AI的行军之路。然而在AI的兵马到来之际,网络环境这条运兵栈道真的已经修建好了吗?如果我们分析一下今天AI面临的“网络路况”,会发现其中孕育着很多痛点。同时,一个智能时代的产业机遇也蕴藏其中。

  AI时代的前夜,网络表示“压力山大”

  我们相信AI时代会在明晨到来,那么今天就是AI时代的前夜。

  这个漫长的前夜里,AI应用正在为ICT基础设施提出越来越多的挑战。

  首先AI运算相比以往的运算更加复杂,一次智能化识别的背后可能包含着几百个模型的计算。能够承担更复杂的运算任务,显然是AI应用ICT基础设施的第一要务。

  同时AI运算往往关乎于图像、关乎于视频,其数据量的庞大程度相比以往实现了从线性到张量的跃进。能承担更大的数据通过量才能让AI应用平稳运行。

  最后AI运算对于ICT基础设施的部署条件要求也更加严苛,以往以太网1‰的丢包率,对于AI应用来说会极大的影响其算力发挥。

AI时代的前夜,网络交换机能否抓住市场迭代的深刻机遇

  这些AI给计算和通信带来的改变,同时也给通行的网络环境施加了巨大的负担。无论是智能驾驶这样的巨大数据量任务,还是工业互联网精准的算法模型部署要求,或者AIoT驳杂的运维压力,都给网络环境添加了无数压力。

  面对AI的到来,网络环境的痛点可以体现在这样几个方面:

  1、庞大算力需要和复杂的异构计算,需要弹性的网络环境支撑,网络速度跟不上,AI算力也就无的放矢。

  2、AI任务要求大规模部署和并行计算、海量非结构化数据通过、实时学习、算法在框架层和应用层的精准度一致等等。这些新要求是此前的网络环境中所不具备的,需要新的主动网络优化能力。

  3、AI时代,企业业务空间增长,并行数据量暴增,直接导致运维工作太过复杂,解放这一压力,也已经刻不容缓。

  这三大痛点之下,直接的结果是网络交换机市场迎来了全新的挑战,同时也是市场迭代的深刻机遇。具有AI支撑能力、智能运维能力的次世代网络交换机,成为了今天AI大局中的当务之急。

  引入CloudEngine 16800作为华为AI发展战略以及全栈全场景AI解决方案中的新成员,通过创造性地在交换机中安装AI芯片,通过智能优化和本地决策获取自动驾驶网络能力。加上单槽48 x 400GE高密端口,可以最大化支持AI运算的高密度流量,把网络环境建设推向了AI时代的新层次。

  CloudEngine 16800背后,华为解决了AI前夜的两个重要问题:让现在简单,让未来通顺。

  更简单的今天:用AI之力扭转网络运维困境

  分析通过安装AI芯片,CloudEngine 16800首创在交换机当中添加AI算力,在设备层面集成了智能化的主动识别和实施决策能力。在这种能力之下,可以实现秒级故障识别和分钟级故障自动定位。

  而这一功能为应用者带来的第一个改变,就在于将可以用AI的智慧来完成运维工作,将今天与日俱增的运维压力释放出来。

  用AI来承担原本耗费大量人力,并且逐渐已经无法为人类所完成的网络运维工作,可以看作几个梯段达成的目标。

  在CloudEngine 16800的AI引擎解决方案中,首先完成的是智能诊断的本地化,通过CloudEngine 16800的本地推理和实时决策,用AI承担运维工作,减少对云服务诊断的依赖,实现低成本高效率。

  接下来,基于智能化运维和故障检测,以及专业故障库的智能匹配,达成故障主动排查,主动监控的能力。将人工难以完成的复杂网络运维监控承担下来。

发表评论
留言与评论(共有 0 条评论)
   
验证码:

相关文章

关闭